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The authorsin [1] appear to assume that r(y:2, —I') =#—m, for
all 1=1, , k. A correct development for distinct eigenvalues is
given, i.e., k== (although they only show the solution for a line of
infinite length). They appear to assume that the fully degenerate
case (k=1) is given by Amemiya in [7]. However, Amemiya assumes
R=G =,0, and also that CL = (1/v¢2)I,. This therefore insures that
although all eigenvalues are the same, (v.>=1/v%), 7 [v.¥[n—p?CL]}=
and I is already in diagonal Jordan form. This would correspond to
7 lossless conductors imbedded in a lossless homogeneous medium [8].
One of the main results of [1, eq. (10)] seems to be in error. The
modal matrix in {1, eq. (10)], [«] (whose columns obviously must be
eigenvectors of ZY), is shown for s =% —m equal eigenvalues with the
remaining m eigenvalues distinct.

Since [1, eq. (7) ] must be a solution to [1, eq. (1c)], it seems clear
that the structure of [«] given in [1, eq. (10)]is only valid if ZY is
partially diagonal (since [V.]in [1] is diagonal) as
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where K is #Xm and K* is an sXs diagonal matrix with identical
scalar elements 42* on the main diagonal. This, of course, is a special
case of all possible structures of ZY.

There do exist certain practical cases where diagonalization of T’
can be shown a preori. If we neglect loss, i.e., G =R =,0,, and assume
C symmetric and positive definite and L symmetric, then one may
determine a real nonsingular transformation matrix T such that
T-irT =p*T-'CLT is diagonal. This is an application of the simul-
taneous diagonalization of two quadratic forms [10]. The assumption
of C and L being symmetric is in most cases quite acceptable and C
will be positive definite if (1) is written so that

[C.l=Ce¢+2C, and [Cy,l=—C,j=i

=1
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where we denote the element of C in the ith row and jth column by
[C,,], Cig is the capacitance of the 4th conductor to ground, and C,
is the mutual capacitance between conductor ¢ and conductor j. Sub-
routine NROOT in the IBM scientific subroutine package performs this
type of reduction, Then the change of variables I (x) =TI, (x) will “de-
couple” (3) with T-1=T7C"1, where we denote the transpose of a
matrix T by T7.

It is also possible to include losses if we assume R =7r(p)I, (iden-
tical conductors), G=,0,, CL=1/vs? I,, and C is symmetric, and
positive definite. Then I =pr(p)C+p%/ve2l,. The transformation
I(x) =TI,(x) such that T71CT is diagonal will decouple (3) and the
existence of T is guaranteed since C is real, symmetric.

Finally, there exist certain cyclic symmetric matrices for which
diagonalization of T does not depend upon the entries in Z and Y.
For example, if n=3 [Zu]=2Z, [Zn]=[Zn]={Za]=2, [Z1]=[Zu]
= [Zn]=2Z2", and Y has a similar structure, then there exists a simple
coordinate transformation T with [Ty,]=[Tul=1/+v/3 for 4, j
=1, 2, 3 [Tn]=[Tn]=e¢*/+/3, and [Tu]=[Twl=a/+/3 with
a=e*% and T*=T* where * denotes complex-conjugate transpose
which will diagonalize I'. This is sometimes referred to as a symmetri-
cal coordinate transformation and can be extended for n>3 [12].
This technique would apply to # wires within a conducting cylinder
arranged symmetrically about the axis

fr(vHo—T)=n—m,, foralli=1,
independent eigenvectors T, for j=1,
fying

, k, then a set of » linearly
-, m,, may be found satis-

(712[7» - r) Tf] = 01 (17)
where T;, is an #.X1 vector function of » which is also a column of T.
If r(yi¥fn—T) >n—m; for some repeated root v,2, then one may find
generalized eigenvectors which place I" in Jordan canonical form [4].
For sinusoidal excitations (p =jv), machine computation of eigen-
vectors is straightforward, although tedious if all # eigenvalues of
I are not distinct.
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On the Surface-to-Bulk Mode Conversion
of Rayleigh Waves

CHI-PIN CHANG anp HANG-SHENG TUAN

Abstract—The surface-to-bulk wave conversion phenomena oc-
curring at a discontinuity characterized by a surface contour de-
formation may be used as a means for tapping Rayleigh waves in a
nonpiezoelectric solid. For this purpose, the mode conversion prob-
lem is treated in this short paper with the use of a boundary perturba-
tion technique. A systematic procedure is obtained to calculate not
only the first-order scattered waves which include the reflected sur-
face wave and the converted bulk wave, but also the higher order
terms. With careful design of the surface contour, the converted
bulk-wave power and the direction of propagation into the substrate
may be controlled.

I. INTRODUCTION

Surface acoustic waves have received considerable attention in
recent years [1], [2]. One important application of surface waves is
in signal processing devices [3]-[5], where their use can reduce device
length by several orders of magnitude compared with their electro-
magnetic counterparts. Hence, an integration of acoustic devices
with integrated electronics is promising. One important factor which
has put these devices into practical use is the introduction of inter-
digital transducers [6], [7] which have high efficiency in exciting,
receiving, and tapping acoustic surface waves. However, inter-
digital transducers only operate on the surface of a piezoelectric crys-
tal. For devices requiring longer delay length and more taps, larger
crystals are needed, which are difficult to grow.

If a nonpiezoelectric solid is used for the main delay path in con-
nection with a piezoelectric substrate [8]-[10], there will be no
length problem, but acoustic surface waves should be tapped along
the main path by methods other than interdigital fingers. In a previ-
ous paper [11], we have studied a discontinuity problem in the hope
that we may use the surface-to-bulk wave transduction at a guiding
discontinuity for tapping Love waves. In this short paper, we treat
a similar problem for the case of Rayleigh waves. The geometry is
shown in Fig. 1. For 2<0, it is a semi-infinite nonpiezeoelectric elastic
medium with density p and Lame’s elastic constants X\, and u, where
A is reserved to denote the Rayleigh wavelength. The guiding sur-
face =0 has a region of deformation around x=0 shown by the
dotted line, while the solid line indicates a perfect surface. Consider
a Rayleigh wave incident from left to right along the x axis. A bulk
wave will be generated due to the discontinuity. It propagates into
the substrate with certain directional characteristics which depend
on the exact geometrical shape of the deformation. This bulk wave
may be detected in the bottom of the substrate if the directional
property of the beam is known. By the use of the boundary perturba-
tion technique [12], [13], the mode conversion problem is system-
atically analyzed.
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Fig. 1. Geometry of the problem.

II. THE INCIDENT RAYLEIGH WAVE

The particle displacement u; of the incident wave may be derived
from a scalar potential ¢, and a vector potential $¢,, namely, u, =V¢;
+VX ;. With the harmonic time dependence ¢, it may be shown
that ¢, and y; satisfy the following wave equations:

a* 9% 5 ot o? Bt
— 4 . = 0, _— =0 1
<ax2+ + 1)¢ (6x2+az2+ 2)¢ 0
where
N + 2u "
k1=S_, k2_.w_, Y = *—-——/-l, and 7;2:/‘/&
v U2 4 P

For the incident Rayleigh wave, ¢; and ¢, are given by
1

S — etlcrre‘/k 2—k22 z

T dibJRE = R

1
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where the wavenumber k. satisfies
— 4k /k2 — ki2VRE — ko (2R2 — k%) = 0. 3)
III. EXCITATION OF RAVLEIGH WAVES BY A LINE SOURCE——

Tue GREEN’s FUNCTIONS

Consider a line source located at z2=0 and x=x'. The Green’s
functions ¢¢ and ¢ ¢, which are the elastic potential functions, satisfy
the equations in (1), respectively. The line source simultaneously
applies tangential and normal stresses at x =x' which are

Tossmo=—P(x)5(x—2") and Ty, |eco=—0)5(x~2")  (4)

where P(x’) and Q(x') denote the two amplitudes of stresses at x’.
The two Green’s functions may be given by

-1 f” 2kEsP + (282 — Ra®)Q

dalx, 24,3 =0) = —

etkle—aYg~ibiz Jb (5)

27r,u. F(k)
Yoz, 234,25 = 0) = E;r_,u k- k;?(g — 2k6Q ekag=itE gk (6)
where F(k) =4k% £+ (2k2 —ko2)?
=vEi =B, |k <k
=ivE — k2 k| >k
£2= vk — B2, Ik! < ks
=iV —k? | k] >k N

The path of integration for (5) and (6) is along the real axis of the
complex £ plane. The evaluation of (5) and (6) by the contour inte-
gration technique necessitates the introduction of appropriate
branch cuts and indentations around poles. The result is given in
Fig. 2. It may be shown that, for F(&) =0, the pair of real roots occur-
ring at +k is identical to the propagation constants of Rayleigh
waves. Clearly, the residue contributions of the poles at +k, to (5)
and (6) give Rayleigh waves propagating in the +x directions along
the surface z=0. Moreover, (5) and (6) contain bulk waves which
propagate into the substrate.
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Fig. 2. The integration path in 2 plane.

IV. BOUNDARY PERTURBATION FORMULATION

The main problem of this short paper is formulated in this sec-
tion. As shown in Fig. 1, the deformed surface is defined by the func-
tion S=S5(x, 2) =2—\ef(x) =0, where X is the Rayleigh wavelength
and e is a small real number such that | \ef'(x) | is less than one in the
region where df(x)/dx is a continuous function. Since the incident
Rayleigh wave does not satisfy the elastic boundary conditions on
the deformed surface, we introduce the complete solution to the
problem as follows:

b = ¢+ Z e"dy and ¢ =y, + Z €Y. (8)
m=1 m=1

Then, ¢ and ¢ must satisfy (1). Because e is just a small parameter,
we conclude that each pair, ¢, and y,, which may be called the mth-
order scattered field, should satisfy (1) also. The boundary conditions
for solving (8) are the tangential and normal stresses to vanish on .S,
These conditions may be cast in the following forms:
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where the subscripts # and ¢ indicate the normal and tangential
directions on S. It may be shown that
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L onS (9)
0!

J
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Substituting (10) into (9), we get a set of boundary conditions
which are combinations of 9/dx and 8/9z operating on ¢ and ¢ equat-
ing to zero on .S. Expanding the results in Taylor series about the
unperturbed boundary z=0 for small ¢, requiring that each pair of
the coefficient functions for a different power of € be zero, we may
obtain the boundary conditions for solving each order of the scat-
tered fields. The first two-pair coefficient functions so obtained are
given as follows:

& Ligy ) =0 and Lug,¢) =0, atz=0 (11

where
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Higher order terms may be also obtained in the same manner. It is
clear that (11) gives the regular two boundary conditions for the
incident Rayleigh wave, whereas (12) gives the needed boundary
conditions for solving the first-order scattered fields ¢ and ¢1. We
may rearrange (12) into the following convenient forms:

Li(¢n, 1) = Zuxﬂ ”a'z—dh z st 2 - ‘h)
! dx \9x? 922 dxdz
9 &
_Mkf(x)( 6324&1 ‘l/+ax2az"l/)
= —Pix), atz =10
& 9°
Lo{d, ¥1) = — AM(®) (6"2‘_74’1 + ) 4")
FY:
— 2uM(x) ( axaz2 l'bi)
= —Qu), atz=0. 3)

It is seen that (13) represents stresses 7% and T, respectively,
on the unperturbed surface z=0. These nonzero stresses are due to
the interaction between the incident Rayleigh wave and the guiding
surface deformation. Hence, (13) may be considered as a sheet of
first-order line sources which generate the first-order scattered fields
¢ and 1. Similarly, we may obtain mth-order sources which will be
in terms of the incident Rayleigh wave and lower order scattered
fields up to (m—1). The perturbation method used here is clearly a
replacement of the original boundary condition on S by some induced
distribution of sources on the unperturbed surface at z2=0.

With the help of (5) and (6), the solution for ¢, and ¥, may be
written as

2kE: P (2 282 — kO
e, ‘)““‘ff +2kE:P1(a") + ( )Qx(x")

27p F®)
cekagitiz dhdy’  (14)
¥z, 2) —‘f f” (2% — k) Pi(x') — 2k56Q1(x)
1(x, 2) = F(k)
-gik@ag—iter dbdy’  (15)

where Pi(x’) and Qi{x') are given by (13) replacing x by %', and —b
to b is the range for which f(x) exists. The path of integration is
along the real axis of the complex % plane shown in Fig. 2. It is seen
that the first-order scattered fields depend on the shape of the surface
deformation through the dependence of variable x. The second-
order scattered fields are found as follows. Firstly, obtain the equiv-
alent line source distribution Py{x’) and Q:(x') from the third-pair
coefficient functions of ¢ in the Taylor series expansion. Then,
¢2(x, ) and ¥s(x, 2) may be obtained with the repeated help of the
Green's functions (5) and (6). Similarly, all other higher order scat-
tered fields proposed in (8) may be found in the same manner.

V. DiscussioN AND CONCLUSION

The evaluation of (14) and (15) may be carried out with the help
of the contour integration technique. It can be shown that the re-
flected surface wave is due to the pole contribution at 2= —k,. The
expression may be obtained quite easily. The bulk wave radiated into
the substrate is contributed by two branch cut integrations along G
and Cy, shown in Fig. 2. The leading term for the far field may be ob-
tained by the steepest descent integration technique. The details of
these are omitted here, as similar calculations are given in (11). To
design the discontinuity for purpose of tapping Rayleigh waves, we
need to properly select the function f(x) and the value of e. As the
bulk-wave power coupled out at the tap is proportional to €?, the
direction of propagation depends on the exact geometric shape of the
surface deformation. In an actual device, only a small portion of the
incident power is used at each tap. Naturally, it requires a deformed
surface contour with small e value. Therefore, the perturbation for-
mulation of this type of discontinuity is believed to give an approx-
imate solution.
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Coupling Errors in Cavity-Resonance Measurements on
MIC Dielectrics

P. H. LADBROOKE, M. H. N. POTOK, a~p E. H. ENGLAND

Abstract—Measurements on MIC dielectrics have been made
by applying the theory of resonant cavities to either wholly or partly
metallized substrates. Two different schemes of coupling are em-
ployed, depending upon the metallization. Errors occur in the de-
rived value of ¢, due to the coupling, and are of opposite sense for
the two methods discussed. They may be averaged to improve the
overall measurement precision (0.5 percent).

Several authors have recently described a convenient way of
measuring the permittivity of MIC substrate materials [1], [2], [6].
The substrate, which may typically be 2.5 cm square by 0.5 mm thick
for Al;O; (alumina and sapphire) and 1.5-2 times larger for quartz, is
simply metallized on some or all of its faces, and cavity resonances are
excited in it from which'e may be deduced. We have used both com-
pletely and partly metallized cavities to measure e for 15 samples of
ALO; and find a scatter of a few percent in the experimental data
which is related to the perturbation of the cavity fields at the coupling
points, the coupling method being different for the two different
metallization schemes. These two methods lead to errors of opposite
sense, and hence yield a more accurate averaged value for e than if
either set were used alone. Of more immediate interest to the prac-
ticing engineer is the finding that certain specific resonances require
no correction at all, yielding quick and accurate answers.

The basic structures investigated are shown in Fig. 1. In Fig. 1(a),
the two large faces are metallized, but the sidewalls are left uncoated
[1]. Excitation and detection are effected at the corners using the
HP 8410A /8740A network analyzer system [1]. We refer to such
cavities as having open-circuit or magnetic sidewalls. For-Fig. 1(b),
the substrate is metallized all over, and two apertures are photo-
lithographically cut: one for excitation via an overlaid stripline 3 mm
in diameter at (y1/5, 2:/5) in the broad face and the other (smaller)
1 mm long in a sidewall for detection via a loop probe. This device
we refer to as having short-circuit or electric sidewalls.

In trying to establish a philosophy for coupling with coated edges,
we first of all tried cutting two apertures in the sidewalls; however,
with this arrangement, only a few of the modes possible could be
found—mainly due to there being no probe penetration into the solid
dielectric. A broadwall hole with overlaid stripline provides tighter
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